Tree Genetics & Genomes (2018) 14:39
https://doi.org/10.1007/s11295-018-1251-3

REVIEW

@ CrossMark

RADseq approaches and applications for forest tree genetics
Thomas L. Parchman - Joshua P. Jahner' - Kathryn A. Uckele - Lanie M. Galland' - Andrew J. Eckert?

Received: 30 August 2017 /Revised: 30 April 2018 / Accepted: 2 May 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract

As tree species vary extensively in genome size, complexity, and resource development, reduced representation methods have
been increasingly employed for the generation of population genomic data. By allowing rapid marker discovery and genotyping
for thousands of genomic regions in many individuals without requiring genomic resources, restriction site-associated DNA
sequencing (RADseq) methods have dramatically improved our ability to bring population genomic perspectives to non-model
trees. The rapid recent increase in studies of trees utilizing RADseq suggests that it is likely to become among the most common
approaches for generating genome-wide data for a variety of applications. Here we provide a practical review of RADseq and its
application to research areas of tree genetics. We briefly review RADseq laboratory methods and consider analytical approaches
for assembly, variant calling, and bioinformatic processing. To guide considerations for study design, we use in silico analyses of
eight available tree genomes to illustrate how expected marker number and density vary across laboratory approaches and
genome sizes, and to consider the ability of RADseq designs to query coding regions. We review the empirical use of
RADseq for different research objectives, considering its strengths and limitations. Many studies have used RADseq data to
perform genome scans for selection, although limited marker density and linkage disequilibrium will often compromise its utility
for such analyses. Regardless of this limitation, RADseq offers a powerful and inexpensive technique for generating genome-
wide SNP data that can greatly contribute to research spanning phylogenetic and population genetic inference, linkage mapping,
and quantitative genetic parameter estimation for tree genetics.
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Understanding how genetic variation is shaped across land-
scapes and genomes is critical for inferring the action of evo-
lutionary processes on forest tree populations, and for
predicting and managing their response to environmental
change (Gonzalez-Martinez et al. 2006; Aitken et al. 2008,
Alberto et al. 2013; Sork et al. 2013). Until recently, population
genetic analyses in tree species were often limited to traditional
molecular markers (e.g., SSRs), Sanger sequencing of modest
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numbers of genes, or to relatively expensive genotyping ap-
proaches that were dependent on genomic or transcriptomic
resources for development (e.g., Eckert et al. 2013; Geraldes
etal. 2013; Pavy etal. 2013). The emergence of DNA sequenc-
ing technologies that allow inexpensive and massively parallel
sequencing of short DNA reads has changed this rapidly
(Mardis 2013) and is driving a steady increase in genomic
resources. Transcriptomes have been sequenced, assembled,
and annotated for many tree species (e.g., Pinosio et al. 2014;
Yeaman et al. 2014). Whole genome reference sequences have
been published for a growing number of angiosperms (e.g.,
Eucalyptus grandis, Myburg et al. 2014; Malus domestica,
Velasco et al. 2010; Populus trichocarpa, Tuskan et al. 2006;
Prunus persica, Verde etal. 2013) and even for a number of the
massive-genomed conifers (e.g., Picea abies, Nystedt et al.
2013; Picea glauca, Birol et al. 2013; Pinus taeda, Neale
et al. 2014; Pinus lambertiana, Stevens et al. 2016).

By increasing the ability to genotype far larger numbers of
loci and individuals, high-throughput sequencing technolo-
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gies are also improving our understanding of how evolution-
ary processes shape genetic variation across populations, spe-
cies, and genomes of tree species (Neale and Kremer 2011,
Sork et al. 2013; Holliday et al. 2016; Ingvarsson et al. 2016;
Yeaman et al. 2016). Substantial genomic resource develop-
ment has bolstered population genomic perspectives in a num-
ber of well-studied angiosperm systems. A quality reference
genome (Tuskan et al. 2006), high-density SNP genotyping
arrays (Geraldes et al. 2013), and whole genome resequencing
studies (e.g., Slavov et al. 2012; Evans et al. 2014) have fur-
ther developed Populus as a model tree system for molecular,
functional, and evolutionary genomics. Similar resources have
been developed for Eucalyptus (Myburg et al. 2014; Silva-
Junior et al. 2015; Silva-Junior and Grattapaglia 2015) as well
as several fruit tree species (e.g., Bianco et al. 2014), and
additional tree species with manageable genome sizes will
soon follow. Whole genome resequencing produces ideal data
for population genomics and has been recently employed for
tree species with smaller genome sizes and quality reference
genomes (Slavov et al. 2012; Evans et al. 2014; Silva-Junior
and Grattapaglia 2015; Wang et al. 2016). However, it is not
currently cost-effective for most species, particularly those
with large genomes, or for studies requiring large numbers
of individuals. As a result, investigators have often turned to
reduced representation methods that sample subsets of ge-
nomes. Targeted capture approaches allow high-throughput
sequencing of predetermined genomic regions but require ge-
nomic resources and the design of capture arrays (Jones and
Good 2016; but see Puritz and Lotterhos 2017). As protein
coding regions can represent small fractions of genome space,
targeted capture approaches for such regions (referred to as
here as exome sequencing) have emerged as promising for
population genomic studies in tree species (e.g., Zhou et al.
2014; Holliday et al. 2016; Lu et al. 2016; Yeaman et al.
2016). The ability to focus sequencing on exons can be ad-
vantageous for some investigations, although such non-
uniform sampling of genome space may compromise others.

Restriction enzyme-guided sequencing approaches, such
as restriction site-associated DNA sequencing (RADseq,
Miller et al. 2007; Baird et al. 2008) and genotyping by se-
quencing (GBS, Elshire et al. 2011) have become the most
popular reduced representation methods for non-model organ-
isms. The terms RADseq and GBS have both been used as
umbrella terms describing a family of methods that use restric-
tion enzymes to guide complexity reduction and sequencing;
we collectively refer to these methods here as RADseq.
Because library preparation is simply based on restriction en-
zyme digest and subsequent adaptor ligation, RADseq
methods can be implemented with or without prior genomic
resources and can be used to rapidly and inexpensively gen-
erate data for large numbers of individuals. In addition, be-
cause it simultaneously allows SNP discovery and genotyping
in the genomic regions sequenced, RADseq suffers less from
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ascertainment bias than some alternative genotyping ap-
proaches. A diversity of laboratory methods offer flexibility
in the number of loci that can be genotyped, the number of
individuals that can be multiplexed, and thus overall project
design and cost (see Davey et al. 2011; Puritz et al. 2014b;
Andrews et al. 2016). Because of these attributes, RADseq is
rapidly bringing genome-wide perspectives and increased res-
olution to basic and applied areas of ecological and evolution-
ary genetic research in natural populations of a diverse range
of non-model taxa, including a diversity of tree species
(Narum et al. 2013; Andrews et al. 2016).

Here we provide a practical review of methodological and
analytical aspects of RADseq and its application to research
areas in tree genetics. We begin with a brief overview of var-
iability in the methods through which RADseq libraries are
produced, and how this variation can be considered for project
design. We use in silico analyses with different RADseq ap-
proaches across forest tree species spanning a continuum of
genome sizes ranging from small (Prunus persica, 0.26 Gb) to
large (Pinus taeda, 22 Gb) to illustrate how expected marker
numbers and densities vary across genomes and laboratory
methods and then link these patterns to their suitability for
different research objectives. We review characteristics of
RADseq data, potential sources of genotyping error, and bio-
informatic approaches to alignment and genotype inference,
including methods that account for statistical uncertainty for
lower coverage sequencing data. Lastly, we consider applica-
tions of RADseq to different research objectives and review
research examples in forest tree genetics that have and may
continue to be well served by such data. While RADseq may
not be the ideal method for analyses requiring saturated mark-
er densities, it represents a rapid and affordable means for
generating genome-wide SNP data that can contribute sub-
stantially to our understanding of genetic variation in trees
for a diversity of research objectives.

How RADseq approaches work

The RADseq family of methods share the attributes of using
restriction enzyme digests and barcoded adaptor ligation to
guide high-throughput sequencing of subsets of genomes for
many samples. The original RADseq method (Miller et al.
2007; Baird et al. 2008) is most widely used, but a variety of
alternative methods have more recently been introduced (for
reviews see Davey et al. 2011; Puritz et al. 2014b; Andrews
et al. 2016). Each begins with digestion of high molecular
weight genomic DNA with one or a combination of restriction
enzymes, so that DNA sequencing is guided by the genomic
distribution of restriction enzyme cut sites. Variation in the
length and GC content of recognition sites gives rise to vari-
ation in the frequency and genomic distribution of cut sites
(Davey et al. 2011). Thus, the degree of complexity reduction
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can be tuned by choosing enzymes that cut more or less fre-
quently. After digestion, customized adaptors that facilitate
PCR amplification and sequencing by synthesis are ligated
to fragments. DNA barcodes, each corresponding to an indi-
vidual sample, are embedded within adaptors to allow samples
to be pooled and simultaneously sequenced. After barcoded
adaptor ligation, samples can typically be pooled for the re-
maining laboratory steps, further reducing the time and mon-
etary investment required. PCR is then used to amplify frag-
ments to produce DNA libraries suitable for sequencing on
short-read technologies such as the Illumina platform.

The original RADseq uses a single restriction enzyme and
mechanical shearing to optimize fragment sizes for sequenc-
ing; size selection is not used and all fragments are sequenced
(Miller et al. 2007; Baird et al. 2008). For most other ap-
proaches, a subset of the fragment size distribution is extracted
to ensure that fragments are within the optimal size range for
sequencing and to further reduce the sampled portion of the
genome, thereby increasing coverage depth per locus or
allowing larger numbers of individuals to be multiplexed.
Size selection can be partially accomplished through PCR
cycles that eliminate long fragments (e.g., GBS; Elshire
etal. 2011), but is more commonly achieved using automated
electrophoresis extractions with a device such as Pippin Prep
(Sage Science, Inc.). Fragment libraries are then used to gen-
erate single-end or paired-end sequencing data, usually on an
[llumina instrument. The resulting reads begin with bases as-
sociated with barcodes and restriction enzyme cut sites and
extend into the tagged genomic regions.

Multiple RADseq methods exist, all having features that
allow the number and density of markers to be adjusted for
particular research scenarios. Laboratory protocols imple-
mented for tree genetics have predominantly been the original
RADseq (Miller et al. 2007; Baird et al. 2008), ddRADseq
(double digest restriction site-associated DNA sequencing,
Peterson et al. 2012), and GBS (Elshire et al. 2011)
(Table 1). For review of other methodological variants, see
Davey et al. (2011) and Andrews et al. (2016). The methods
vary by their use of one or two restriction enzymes, the man-
ner in which adaptors are ligated to fragments, the point in
library preparation where multiplexing occurs, and other as-
pects related to complexity reduction. Here we provide only
this brief overview, as descriptions and comparisons of alter-
native laboratory methods have been thoroughly reviewed
elsewhere (see Davey et al. 2011; Poland and Rife 2012;
Puritz et al. 2014b; Andrews et al. 2016). Although the pur-
chase of customized barcoded oligos entails an initial cost for
labs first establishing RADseq workflows, the expense of con-
structing libraries is otherwise limited to the modest cost of
restriction enzymes, PCR reagents, and plastics. Thus, the
production of genome-wide genotypic data with RADseq rep-
resents a far less substantial time and monetary commitment
than past methods required. Instead, research progress is more

often limited by the ability and availability of trained investi-
gators to thoroughly execute the bioinformatic analysis of
data.

Research design for RADseq with forest trees

The number of sampled genomic regions will depend on ge-
nome size, the RADseq method utilized, choice of restriction
enzymes, degree of size selection, genetic diversity, and pa-
rameter settings applied during the filtering of data. The pre-
ferred density of loci should depend on the research objective
and the pattern and extent of linkage disequilibrium (LD) in
the populations under study. Researchers seeking higher den-
sity SNPs for locus-specific parameter estimates (i.e., genome
scans, association mapping) can employ methods with the
least complexity reduction in order to maximize marker den-
sity. In contrast, many research objectives in tree genetics are
less dependent on maximizing marker density and can benefit
more from genotyping a reduced set of loci in larger numbers
of individuals. Prediction of the number of loci expected for
different RADseq protocols can be valuable for optimizing
sequencing effort based on the number of samples, desired
marker density, and sequencing coverage depth required to
best suit research goals. While probabilistic prediction can
be accomplished based on genome size and GC content
(Davey et al. 2011; radcounter tool available at www.
wiki.ed.ac.uk/display/RADSequencing), considerable
phylogenetic variation exists among eukaryotic lineages in
the frequency of enzyme recognition sequences independent
of GC content (Davey etal. 2011; Herrera et al. 2015). Several
software packages exist for the in silico prediction of the num-
ber of genomic regions a RADseq protocol will query for taxa
with available reference genomes (s imRAD, Lepais and Weir
2014; ddradseqtools, Mora-Marquez et al. 2017). For
taxa where reference genomes are not available, genomes of
similar size for closely related taxa can often be used for this
purpose (e.g., Chafin et al. 2017).

To characterize the expected numbers and densities of loci,
we used simRAD, following example code of Lepais and
Weir (2014), to perform in silico predictions for eight tree
species representing a continuum of genome size (Table 2).
We utilized reference genomes for peach (Prunus persica,
Verde et al. 2013), black cottonwood (Populus trichocarpa,
Tuskan et al. 2006), grand eucalyptus (Eucalyptus grandis,
Myburg et al. 2014), domesticated apple (Malus domestica,
Velasco et al. 2010), a basal angiosperm (Amborella
trichopoda, Albert et al. 2013), valley oak (Quercus lobata,
Sork et al. 2016), Douglas-fir (Pseudotsuga menziesii, Neale
etal. 2017), and loblolly pine (Pinus taeda, Neale et al. 2014).
We predicted the number of fragments that would be se-
quenced with the two RADseq methods most commonly used
for tree species (RADseq and ddRADseq; Table 1) across a
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Table 1  Examples of studies utilizing RADseq methods for forest tree genetics. Studies are organized by the type of analysis and by the year of

publication. For each study, the RADseq method, restriction enzyme(s), and assembly method are listed

Species Citation Method Type of analysis
Actinidia chinensis (kiwifruit) Liu et al. 2017 RAD; EcoRI, R Linkage mapping
Populus tremula (Salicaceae) Zhigunov et al. 2017 ddRAD; Hindll1-Nlalll, RC Linkage mapping, QTL
Gleditsia triacanthos (Fabaceae) Gailing et al. 2017 RAD:; Shfl, D Linkage mapping
Citrus (mandarin) Imai et al. 2017 GBS; Pstl, RC Linkage mapping, QTL
Quercus rubra (Fagaceae) Konar et al. 2017 ddRAD; EcoRI-Msel, D Linkage mapping
Ficus carica (common fig) Mori et al. 2017 ddRAD; Ps#-Mspl, R Linkage mapping

Olea europaea ssp. europaea (olive) Marchese et al. 2016 GBS; ApeKlI, D Linkage mapping
Populus deltoides x P. simonii (Salicaceae) Mousavi et al. 2016 RAD; EcoRI, RC and D Linkage mapping
Populus deltoides x P. simonii (Salicaceae) Tong et al. 2016 RAD; EcoRI, RC Linkage mapping
Ziziphus jujuba (jujube) Zhang et al. 2016 GBS*; Msel-Haelll-EcoRI, R Linkage mapping
Prunus persica (peach) Bielenberg et al. 2015  GBS; ApeKI, R Linkage mapping, QTL
Pinus balfouriana (Pinaceae) Friedline et al. 2015 ddRAD; EcoRI-Msel, D Linkage mapping
Prunus avium (sweet cherry) Guajardo et al. 2015 GBS; ApeK], RC Linkage mapping
Citrus grandis (pummelo) Guo et al. 2015 RAD; EcoRI, RC Linkage mapping
Elaeis guineensis (0il palm) Pootakham et al. 2015a ddRAD; PsdA-Mspl, R Linkage mapping, QTL
Hevea brasiliensis (rubber tree) Pootakham et al. 2015b  ddRAD; PsdA-Mspl, R Linkage mapping
Callitris glaucophylla (Cupressaceae) Sakaguchi et al. 2015~ ddRAD; EcoRI-Bg/ll, RC Linkage mapping
Actinidia chinensis (kiwifruit) Scaglione et al. 2015 ddRAD; Sphl-Mbol, R Linkage mapping

Malus x domestica (apple)
Ziziphus jujuba (jujube)
Robinia pseudoacacia (Fabaceae)

Cedrus atlantica (Pinaceae)

Pinus tabuliformis, P. densata, and P. yunnanensis

(Pinaceae)
Frangula alnus (Rhamnaceae)

Pinus contorta and Picea glauca (Pinaceae)

Quercus section Cyclobalanopsis (Fagaceae)
Aurantioideae (Rutaceae)

Quercus sect. Quercus (Fagaceae)

Coffea (Rubiaceae)

Quercus sect. Quercus (Fagaceae)

Quercus sects. Quercus and Protobalanus (Fagaceae)

Morella (Myricaceae)
Diospyros (Ebenaceae)

Quercus sects. Quercus, Lobatae, and Protobalanus

(Fagaceae)

Quercus sects. Quercus, Lobatae, and Protobalanus

(Fagaceae)

Quercus chrysolepis and Q. tomentella (Fagaceae)

Quercus series Virentes (Fagaceae)
Rhizophora mangle (Rhizophoraceae)

Quercus series Virentes (Fagaceae)

Pinus strobiformis % P. flexilis

Citrus maxima * C. reticulata (pummelo and

mandarin)
Populus alba % P. tremula (Salicaceae)

Betula nana, B. pubescens, and B. pendula
(Betulaceae)
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Gardner et al. 2014
Zhao et al. 2014
Verdu et al. 2016
Karam et al. 2015
Pan et al. 2015

De Kort et al. 2014¢
Chen et al. 2013

Deng et al. 2018
Nagano et al. 2018
Fitz-Gibbon et al. 2017
Hamon et al. 2017
McVay et al. 2017
Pham et al. 2017

Liu et al. 2015a

Paun et al. 2016

Hipp et al. 2014

Hipp et al. 2013

Ortego et al. 2017
Eaton et al. 2015
Hodel et al. 2017

Cavender-Bares
et al. 2015
Menon et al. 2018

QOueslati et al. 2017

Christe et al. 2016
Zohren et al. 2016

ddRAD; Hindlll-Mspl, R
RAD; EcoRI, D

ddRAD; EcoRI-Msel, D
RAD; Pstl, D

GBS/ddRAD; Hpall,
Pstl/EcoRI-Msel, D

RAD-PE; Shfl, D
GBS; ApeKI, D

RAD; Psd, D

ddRAD; Bgl/ll-EcoRI, D and RC

RAD; Pstl, D and RC
GBS; Pstl, RC

RAD; Pstl, D

RAD; Pstl, D

RAD; EcoRI, D
RAD; Shfl, D

RAD; Pstl, D

RAD; Pstl, D

ddRAD; EcoRI-Msel, D
RAD; Pstl, D
ddRAD; EcoRI-Msel, D
RAD; Pstl, D

ddRAD; EcoRI-Msel, D
GBS; ApeKI, RC

RAD:; Pstl, RC
RAD; Pstl, R and RC

Linkage mapping, QTL
Linkage mapping
Marker development
Marker development

Marker development, method

optimization

Marker development

Marker development, method

optimization
Phylogenetics
Phylogenetics
Phylogenetics
Phylogenetics
Phylogenetics
Phylogenetics
Phylogenetics
Phylogenetics
Phylogenetics

Phylogenetics

Phylogenetics, introgression

Phylogenetics, introgression

Phylogeography
Phylogeography

Hybridization
Hybridization

Hybridization
Hybridization
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Table 1 (continued)

Species Citation Method Type of analysis

Populus alba % P. tremula (Salicaceae) Lindtke et al. 2014 ddRAD; EcoRI-Msel, R and RC Hybridization

Populus alba x P. tremula (Salicaceae) Stolting et al. 2013 RAD; Psil, RC Hybridization

Betula nana, B. pubescens, and B. pendula Wang et al. 2013 RAD; Pstl, D, R, and RC Hybridization, marker
(Betulaceae) development

Populus alba % P. tremula (Salicaceae) Caseys et al. 2012 RAD; Pstl, RC Hybridization

Cornus florida (Cornaceae)

Tsuga mertensiana (Pinaceae)
Alnus glutinosa (Betulaceae)
Picea engelmannii x P. glauca (Pinaceae)

Picea sitchensis (Pinaceac)

Picea engelmannii x P. glauca (Pinaceae)
Pinus albicaulis (Pinaceae)

Banksia attenuata (Proteaceae)

Pinus contorta (Pinaceae)

Tsuga mertensiana (Pinaceae)

Milicia (Moraceae)
Alnus glutinosa (Betulaceae)

Castanopsis carlesii (Fagaceae)

Alnus glutinosa (Betulaceae)

Pais et al. 2017

Johnson et al. 2017a
De Kort et al. 2014b
El-Dien et al. 2015

Fuentes-Utrilla
etal. 2017

Ratcliffe et al. 2015
Lind et al. 2017

He et al. 2016
Parchman et al. 2012
Johnson et al. 2017b

Dainou et al. 2016
De Kort et al. 2016
Sun et al. 2016

De Kort et al. 2014a

ddRAD; Pstl-Mspl, D

ddRAD; Sphl-MluC1, D
GBS; Pstl, D
GBS; ApeKI, D

RAD/SD-RAD; Pstl/Pstl-Alwl, D

GBS; D

ddRAD; Msel-EcoRI, D
RAD:; EcoRI, D
ddRAD; EcoRI-Msel, D
ddRAD; Sphl-MluC1, D

RAD:; SifI, D
GBS; Psd, D
RAD; Sbfl, D

GBS; Pst, D

Genome scan, landscape
genomics

Landscape genomics
Landscape genomics
Genomic selection

Genomic selection, QTL
analysis

Genomic selection

Association mapping
Association mapping
Association mapping

Parentage analysis, dispersal
distance estimation

Species delimitation
Heritability, evolvability

Population genetics, genome
scan

Seed zone delineation

Naming of sequencing approaches was taken from Andrews et al. (2016) or from the cited literature: GBS, genotyping by sequencing (Elshire et al.
2011); RAD, restriction site-associated DNA sequencing (Miller et al. 2007; Baird et al. 2008); ddRAD, ddRADseq (Peterson et al. 2012); SD-RAD,

second digestion RADseq (as described in Fuentes-Utrilla et al. 2017); RAD-PE, paired-end RADseq (Etter et al. 2011)

D de novo assembly, R reference-based assembly to the genome of the same species, RC reference-based assembly to a congener’s genome

* Three enzymes were used in this protocol

continuum of complexity reduction involving different en-
zymes or size selection windows. Genome sizes ranged from
0.26 to 22 Gb, and enzyme recognition sites ranged from four
to eight bases in length (Table 2). The original RADseq (Baird
et al. 2008) uses single restriction enzymes without further
complexity reduction. For this, we used the
in.silico.digest function to digest genomes at speci-
fied cut sites without size selection. The use of two restriction
enzymes and subsequent size selection with ddRADseq
(Peterson et al. 2012) increases complexity reduction. For
ddRADseq, we used in.silico.digest with pairs of
enzymes, adapt.select to subset fragments properly
flanked by the two cut sites, and size.select to extract
fragments from different size windows (Table 2). Predictions
based on the number of restriction sites in genome sequences
represent the theoretical maximum number of sampled geno-
mic regions. Empirically, this number may be reduced, and the
number of retained polymorphisms will depend on biological
(e.g., mutation rate, genetic diversity) and experimental (e.g.,
sampling scheme) attributes, as well as bioinformatic choices
made during analysis (e.g., filtering).

Variation for a given method across species illustrates, as
expected, that numbers of predicted loci are positively related
to genome size (Table 2). This relationship, however, is not
always strongly linear, due to GC content and other aspects of
genome architecture influencing the distribution of enzyme
recognition sites (Table 2, Fig. 1). Within species, laboratory
method, choice of restriction enzymes, and size selection in-
terval create pronounced variation in marker densities
(spanning three orders of magnitude; Table 2). Enzymes with
larger recognition sites (e.g., Shfl, 8 bp recognition site) typi-
cally result in fewer loci than those with shorter sites (e.g.,
EcoRl, 6 bp recognition site; Table 2), although this pattern
will not hold for all enzymes (see Herrera et al. 2015). The
base composition of sites also matters; EcoRI and Psf both
have 6 bp recognition sites, yet EcoRI, with a higher GC
content recognition site, generates substantially more loci than
Pstl across all species surveyed (Table 2, Fig. 1). Such varia-
tion among taxa and enzymes highlights the value of in silico
prediction for RADseq research design.

The original RADseq (Baird et al. 2008) does not employ
size selection and thus generates the highest marker densities
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Table 2 Number of loci predicted for 15 different RADseq laboratory
protocols across eight tree species with available reference genomes:
Prunus persica (Verde et al. 2013); Populus trichocarpa (Tuskan et al.
2006); Eucalyptus grandis (Myburg et al. 2014); Malus domestica
(Velasco et al. 2010); Amborella trichopoda (Albert et al. 2013);
Quercus lobata (Sork et al. 2016); Pseudotsuga menziesii (Neale et al.

2017); Pinus taeda (Neale et al. 2014). The number of predicted loci for
each protocol is given in thousands, with marker density listed parenthet-
ically (thousands of loci per gigabase). The sizes of enzyme recognition
sites are listed parenthetically after enzyme names, followed by size se-
lection windows for ddRADseq protocols. For the six angiosperm ge-
nomes, assembly length is reported instead of estimated genome size

Genus

Prunus Populus Eucalyptus  Malus Amborella  Quercus Pseudotsuga  Pinus
Protocol Genome size/ assembly length

0.23 Gb 0.43 Gb 0.69 Gb 0.70 Gb 0.71 Gb 0.76 Gb 19 Gb 22 Gb
RAD: Nsil (4) 211 (917) 423 (984) 623 (903) 624 (891) 667 (939) 704 (926) 16,853 (887) 17,308 (787)
RAD: EcoRI (6) 142 (617) 254 (591) 431 (625) 390 (557) 354(499) 400 (526) 9495 (500) 10,346 (470)
RAD: Pstl (6) 94.8 (412) 152 (353) 222 (322) 208 (297) 149 (210) 161 (212) 4276 (225) 4309 (196)
RAD: Shfl (8) 322(14.0) 5.17 (12.0) 8.65(12.5) 8.75(12.5) 12.5(17.6) 4.95(6.51) 179 (9.42) 181 (8.23)
ddRAD: EcoRI, Msel (6,4), 250450 bp 17.2 (74.8) 24.5(57.0) 55.6 (80.6) 44.8 (64.0) 44.2 (62.3) 39.7(52.2) 1241 (65.3) 1320 (60.0)
ddRAD: EcoRI, Msel (6,4), 300-350 bp 4.70 (20.4) 6.57 (15.3) 14.6(21.2) 12.8(18.3) 11.8(16.6) 10.4 (13.7) 322 (16.9) 355 (16.1)
ddRAD: EcoRI, Msel (6,4), 350400 bp 3.35 (14.6) 4.70 (10.9) 11.9 (17.2) 9.40 (13.4) 9.26 (13.0) 7.84 (10.3) 265 (13.9) 288 (13.1)
ddRAD: EcoRI, Msel (6,4), 400450 bp 2.79 (12.1) 3.47 (8.07) 8.58 (12.4) 6.32(9.03) 6.74(9.49) 5.86(7.71) 191 (10.1) 208 (9.45)
ddRAD: EcoRI, Msel (6,4), 450-500 bp 1.93 (8.39) 2.64 (6.14) 6.82(9.88) 5.86(8.37) 5.05(7.11) 4.18(5.50) 176 (9.26) 149 (6.77)
ddRAD: EcoRl, Sphl (6,6), 250450 bp 6.16 (26.8) 12.1 (28.1) 19.2 (27.8) 18.0 (25.7) 19.6 (27.6) 14.8(19.5) 425(22.4)  432(19.6)
ddRAD: EcoRl, Sphl (6,6), 300-350 bp  1.54 (6.70) 2.90 (6.74) 4.50 (6.52) 4.60 (6.57) 4.83 (6.80) 3.48 (4.58) 98.6(5.19) 104 (4.73)
ddRAD: EcoRl, Sphl (6,6), 350400 bp 1.47 (6.39) 3.05(7.09) 4.91(7.12) 3.90 (5.57) 4.46(6.28) 3.68 (4.84) 117 (6.16) 110 (5.00)
ddRAD: EcoR1, Sphl (6,6), 400450 bp 1.44 (6.26) 2.99 (6.95) 4.80 (6.96) 4.18 (5.97) 4.40(6.20) 3.48 (4.58) 93.0(4.89)  90.6 (4.12)
ddRAD: EcoRl, Sphl (6,6), 450-500 bp 1.36 (5.91) 2.77 (6.44) 4.20 (6.09) 4.31(6.16) 3.92(5.52) 3.19(4.20) 83.1(4.37) 91.1 (4.14)
ddRAD: EcoR1, SHf1 (6,8), 250450 bp  0.22 (0.96) 0.31 (0.72) 0.45(0.65) 0.45(0.64) 0.87 (1.23) 0.24 (0.32) 9.06 (0.48)  9.21 (0.42)

when executed with frequently cutting enzymes (Table 2).
RADseq designs utilizing stronger complexity reduction re-
duce cost per individual sample and can still effectively sam-
ple genome space for research objectives that do not require

A

O RAD: EcoRI
O RAD: Pstl

400 +

300

200

Thousands of loci

100 +

T T T T T T T
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Genome size (gb)
Fig. 1 The relationship between genome size and the number of loci
predicted using simRAD for six angiosperm species (from smallest to

largest genome size: Prunus persica; Populus trichocarpa; Eucalyptus
grandis; Malus domestica; Amborella trichopoda; Quercus lobata). The
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maximizing marker density, such as analyses of population
structure, gene flow, phylogenetic inference, or QTL mapping
(Peterson et al. 2012). Increased complexity reduction results
in the ability to multiplex more samples and/or to achieve
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relationship is shown for a two original RADseq laboratory protocols
using enzymes with a 6 bp restriction site and b four ddRADseq
protocols that use the same two restriction enzymes (EcoRI, Msel) but
vary by size selection window (more information in Table 2)
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higher coverage depth. Complexity reduction can be con-
trolled to varying degrees by modifying restriction enzymes
and/or size selection strategies. The original RADseq
employed with restriction enzymes with infrequent recogni-
tion sites can reduce complexity substantially (e.g., ShfI,
Table 2). Transposons and other repetitive elements can be
abundant in plant genomes and are often heavily methylated
(Lisch 2009, 2013; Nystedt et al. 2013; Wegrzyn et al. 2014).
The use of methylation-sensitive enzymes (e.g., EcoRlI,
ApeKl, Hapll, Mspl) can further reduce complexity by
enriching the representation of non-repetitive genomic regions
(Elshire et al. 2011; Poland and Rife 2012; Pan et al. 2015).
For example, with the original RADseq using Ps¢I (methyla-
tion-sensitive 6-cutter) applied to Cedrus atlantica (16 Gb
genome), 17% of SNPs occurred in protein coding regions
and only 3.6% annotated to transposable element families,
suggesting substantial enrichment for non-repetitive genomic
regions (Karam et al. 2015). As repetitive regions are common
in tree genomes and can lead to downstream artefacts with
assembly and variant calling, the use of methylation-
sensitive enzymes could be effective for complexity reduction
and improving analysis quality.

With ddRADseq, both enzyme choice and the range of
fragment sizes selected can produce substantial variation in
the number of sampled genomic regions (Peterson et al.
2012; Table 2). This can be valuable for sequencing fewer loci
at higher depth or across larger numbers of individuals. For any
ddRADseq design, narrower size selection windows will also
reduce the number of predicted loci. Depending on the en-
zymes used, different size regions of the fragment size distri-
bution can also contain variable densities of loci. With size
selection of 50 base intervals, ranging from 300-350 to 450—
500, marker density declines sharply as fragment sizes increase
for ddRADseq with EcoRI and Msel (Table 2, Fig. 1). In con-
trast, with the enzymes EcoRI and Sphl, the number of predict-
ed loci remains similar across the same windows (Table 2).
Given its complexity reduction flexibility, ddRADseq is well
suited to cost-effective genotyping designs for analyses requir-
ing fewer markers in a broad range of tree species. As the
oligos for a given enzyme pair represent an upfront cost to
establishing a RADseq workflow, the ability to alter marker
densities through size selection changes without enzyme mod-
ification makes ddRADseq an attractive option for labs work-
ing on multiple species.

To illustrate how commonly employed ddRADseq de-
signs sample genic and non-genic portions of genomes, as
both are often implicated as important to the genetic ar-
chitecture of phenotypes (e.g., Mei et al. 2018), we
mapped predicted fragments generated above with in
silico ddRADseq analyses (EcoRI, Msel; size selection
window: 250-450 bp) to the reference genomes for
P trichocarpa, E. grandis, and P. taeda. These species
differ greatly in genome size and complexity, as well as

the number of predicted RADseq fragments (Table 2). We
quantified the ability to uniquely map RADseq fragments
to the reference genome from which they originated and
the position of these mapped fragments relative to anno-
tated genes. We used BLASTN (default parameter settings)
to map fragments to each genome sequence, quantified
patterns in the returned list of hits, and summarized the
position of these mappings relative to genic regions. In
general, the majority of fragments generated in silico
could be uniquely mapped to the genome from which they
originated. For example, only 2 to 3% of the fragments
had a perfect, full-length match to multiple genomic po-
sitions. Mapping abilities were efficient even when
allowing for conditions comparable to single-end se-
quencing of fragments containing variants (50% query
length with 98.5% identity which translates to 2—6 vari-
ants depending upon size of the query), with only 5 to
10% of fragments having second best blast hits of suffi-
cient similarity to create high levels of uncertainty in po-
sitional homology.

Mapped fragments overlapped roughly 25% of annotated
gene regions for Populus and Eucalyptus (Fig. 2). We did not
examine this pattern for Pinus, as the annotations are less
certain. The median distance to the closest annotated gene
region across all fragments, moreover, varied from 1978 bp
(Populus) to 5697 bp (Eucalyptus), with a 2.9-fold increase in
the median distance to the closest gene between species dif-
fering 1.5-fold in genome size. Importantly, the ddRADseq
prediction for these analyses involves substantial complexity
reduction; laboratory methods generating higher marker den-
sities (Table 2) will result in concomitant increases in the
coverage of genic regions. These results are consistent with
the hypothesis that RADseq-generated fragments can confi-
dently cover portions of genic and non-genic regions of an-
giosperms. With genome sizes up to 50 times larger, the sam-
pling of genic regions will be lower for conifers, although the
use of methylation-sensitive enzymes could improve the re-
covered fraction (e.g., Karam et al. 2015). These results
should be interpreted cautiously, as they rely on qualities of
the assembled and annotated genome sequences, do not con-
sider variation in rates of mutation or recombination across
genomes, and do not contextualize the degree of coverage
within gene regions (e.g., one RADseq fragment will not tag
all relevant variation segregating within a locus). Nonetheless,
they highlight how genomic resources emerging across mul-
tiple clades of trees can be leveraged to gauge the strengths
and weaknesses of RADseq designs for particular evolution-
ary and ecological questions.

Are certain methods better choices for specific research
objectives and tree species? The original RADseq used with
frequently cutting enzymes will generate the highest marker
densities and should be preferred for studies aimed at detect-
ing selection on genome variation, association mapping, or
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other analyses benefitting from maximum marker density.
Such methods could be relatively cost-effective in smaller-
genomed angiosperm species. For the large-genomed coni-
fers, they will sample enormous numbers of genomic regions
(Table 2), limiting the number of individuals that can be ef-
fectively multiplexed on individual sequencing lanes. All of
the methods represented in Table 2 have been used for com-
plexity reduction in tree species. The large genome sizes of
conifers can require more substantial complexity reduction to
achieve cost-effective multiplexing, and this has been
achieved by using infrequently cutting and/or methylation-
sensitive restriction enzymes with original RADseq (e.g.,
Karam et al. 2015; Pan et al. 2015) as well as with
ddRADseq approaches employing size selection (e.g.,
Johnson et al. 2017a; Lind et al. 2017; Menon et al. 2018).
Many RADseq studies of tree species have used methylation-
sensitive enzymes (EcoRI, ApeKl, Hapll, Mspl; Table 1),
which may be effective in reducing representation of repetitive
genomic regions. In silico prediction for designs utilizing
methylation-sensitive enzymes will overestimate the number
of predicted loci, and the extent of this overestimation will
likely increase with the genomic fraction consisting of repet-
itive elements (e.g., Pan et al. 2015). Overall, the ability to
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alter complexity reduction gives RADseq great flexibility for
genotyping designs for a wide array of research objectives
across tree species with variable genome sizes and patterns
of LD. Given the diversity of RADseq outcomes that are de-
pendent upon experimental choices and structural attributes of
the genomes under scrutiny, we suggest that researchers care-
fully match their questions to expected data outcomes. The
growing availability of genomic resources across major clades
of forest trees should increasingly allow researchers to explore
outcomes in silico prior to protocol implementation.

Analytical approaches and considerations
for RADseq data

Nearly all RADseq projects use Illumina instruments for
sequencing, and data sets of hundreds of millions or bil-
lions of reads are the starting point for analyses. While past
population genetic analysis tools were often implemented
with graphical user interface (GUI) software, the larger
size and complexity of RADseq and other genomic data
sets require many analyses to be executed on high-
performance computing systems or at least on server nodes
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with large amounts of RAM. This necessitates that re-
searchers are effective working from the command line in
Unix or Linux environments, and have a working knowl-
edge of a scripting language such as Perl or Python. The
bioinformatic skills needed for responsible analysis of such
data are significant and represent a transition in expertise
for tree genetics investigators accustomed to molecular
marker systems of the past. Building such expertise within
research groups may require substantial time and personnel
investment and can be an under-appreciated cost in con-
structing research budgets.

Utilization of reference genomes

One reason that RADseq datasets have proliferated in non-
model trees is that the approach allows marker discovery
and genotyping in the absence of genomic resources.
Nonetheless, there are numerous advantages to utilizing refer-
ence genomes for the analysis and interpretation of RADseq
data. First, alignment of reads, or consensus sequences from
clustered genomic regions, to a reference genome allows fil-
tering of contaminants from library preparation or from endo-
symbionts residing in plant tissue (e.g., bacterial and fungal
endophytes). Second, reference genome alignment can reduce
genotyping error caused by the misalignment of paralogous
regions. Third, reference genomes allow the ordering of loci
across scaffolds and the empirical measurement of LD decay,
facilitating an understanding of how parameter estimates vary
across genomes (e.g., Hohenlohe et al. 2012; Stolting et al.
2013; Ruegg et al. 2014) and providing context for
interpreting genome scan or mapping analyses (e.g., Roesti
et al. 2012; Epstein et al. 2016). Finally, as illustrated above,
reference genomes can be used for in silico prediction for
tailoring RADseq methods to research objectives.

Despite the advantages of processing RADseq data using
reference genomes, the extent to which aligning to a reference
genome can minimize genotyping bias is not always clear.
Mapping raw reads to a reference genome can bias allele fre-
quencies towards states found in the reference, reduce the
number of called SNPs, or bias nucleotide diversity estimates
downward (Pool et al. 2010), issues that will be exaggerated
with more divergent reference genomes. Paris et al. (2017)
suggest that building loci de novo before mapping consensus
sequences to reference genomes may have the advantages of
merging reads into biologically informed contigs and avoiding
bias that may occur from aligning reads individually to refer-
ence genomes. In such cases, alignment of contig consensus
sequences to reference genomes can still allow evaluation of
potential alignment or genotyping error. Useful de novo as-
sembly approaches have been developed, and several proce-
dures have been proposed for optimizing de novo assembly of
RADseq data (Mastretta-Yanes et al. 2015; Paris et al. 2017).
A number of studies have compared de novo and reference-

based approaches in terms of genotyping bias and effects on
downstream analyses. Shafer et al. (2017) used RADseq data
for Galapagos sea lions (Zalophus wollebaeki) to compare de
novo and reference-based assembly with draft genomes of
Z. wollebaeki and three related marine mammals. Reference-
based approaches led to analytical results more consistent with
expectations from simulations, but marker density decreased
as the genetic distance to the reference increased. In similar
analyses for Betula nana and two other Betula species,
reference-based assemblies limited the over-assembly of
paralogous regions, but de novo methods led to higher marker
density (Wang et al. 2013). The benefits of reference genomes
are less clear for phylogenetic data, where reads from multiple
species are often aligned to a single reference. Fitz-Gibbon
et al. (2017) compared maximum likelihood phylogenetic
trees for California white oaks generated after de novo assem-
bly and assembly to the Quercus lobata genome. Although
these two approaches produced highly concordant phyloge-
nies, further studies assessing different methods of alignment
should be useful.

Due to a current lack of reference genomes for study spe-
cies or their close relatives, most RADseq studies of forest
trees to date have used de novo approaches (Table 1).
Nonetheless, studies of Populus, Eucaplyptus, and a number
of fruit tree species have utilized available high-quality refer-
ence genomes (e.g., Lindtke et al. 2014; Mori et al. 2017,
Oueslati et al. 2017; Table 1). In many instances where refer-
ence genomes do not exist for the species under study, ge-
nomes of closely related taxa have been used (Table 1).
Studies of population structure and hybridization in different
Populus species have often utilized the P, trichocarpa genome
(e.g., Stolting et al. 2013; Christe et al. 2016; Table 1), and
fruit tree genomes have been used for related natural and do-
mesticated varieties (e.g., Oueslati et al. 2017; Nagano et al.
2018). Although few in number and having assemblies char-
acterized by large numbers of small scaffolds, draft conifer
genomes could be useful for RADseq data from closely relat-
ed species. For non-model trees with smaller genomes, even
low-coverage shotgun sequencing could be used to generate
reasonable contig assemblies to achieve some benefits of a
reference genome. As costs and methods for genome assem-
bly continue to improve, reference genomes should increas-
ingly contribute to the analysis and interpretation of RADseq
data.

Software pipelines for alignment and variant calling

Among the software pipelines designed specifically for as-
sembly and variant calling with RADseq data, Stacks
(Catchen et al. 2011, 2013) has been most widely used.
Alternatives have more recently been developed, all of which
share similar workflows but have unique capabilities
(Table 3). Initial analysis steps involve removing barcodes,
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Table 3 Examples of assembly

Notable characteristics

and variant calling pipelines Pipeline

designed specifically for RADseq

data AftrRAD?
dbocent®
fastGBS®

GBS-SNP-CROPY

GibPSs®

ipyradf

RADIS®

Stacks!

De novo assembly pipeline that can incorporate indel variation

Evaluates loci for excess heterozygosity to remove paralogous loci

Computationally efficient option if multicore computing resources are not available
Bash wrapper for assembly, variant calling, and filtering

Can be implemented for any RADseq library protocol or sequence type

Reference optional assembly that incorporates indel variation

Bayesian model to account for genotype uncertainty (FreeBayes¥)

Haplotype-based option for paralog identification

Reference-based assembly pipeline that can incorporate indel variation

Able to utilize sequencing reads of different lengths from different sequencing platforms
Reference optional pipeline tailored for paired-end GBS datasets

Designed for studies of crop species with few genomic resources, including polyploids
De novo pipeline that can be implemented for any RADseq protocol or sequence type
Capable of analyzing fully, partially, or non-overlapping reads in the same analysis
Uses a distance-based network clustering approach to identify loci

Incorporates three filters for the removal of paralogous loci

De novo or reference-based assembly pipeline that can incorporate indel variation
Designed for studies with greater phylogenetic breadth

Filters paralogous loci based on the number of heterozygous states

Series of Perl scripts that utilize Stacks to perform most pipeline steps

Designed for phylogenetics (analyses conducted with RAxML')

Allows for rapid comparison of how alternative parameter settings affect tree topology
Most commonly used pipeline for de novo and reference-based assembly

Detects PCR duplicates with paired-end sequencing of original RADseq libraries

Calculates common population genetic summary statistics

TASSEL-GBS'

Designed for studies with exceptionally high numbers of individuals and loci

Requires a reference genome (or a pseudo-reference)

TASSEL-UNEAK

A network-based pipeline for de novo assemblies, designed to also handle polyploidy

Currently supported in TASSEL v3. 0™, but not in later versions

#Sovic et al. (2015)

® Puritz et al. (2014a)

¢ Torkamaneh et al. (2017)
9Melo et al. (2016)

¢ Hapke and Thiele (2016)
PEaton (2014)

¢ Cruaud et al. (2016)

" Catchen et al. (2011, 2013)
! Glaubitz et al. (2014)

ILu etal. (2013)

X Garrison and Marth (2012)
!'Stamatakis (2014)

" Bradbury et al. (2007)

associating reads with the correct sample, and filtering con-
taminants and low-quality reads. Assembly either begins by
aligning reads to a reference genome or by clustering or as-
sembling reads de novo. Most pipelines can utilize de novo
and reference-based approaches, although some require refer-
ence genomes (e.g., fastGBS, TASSEL-GBS). Some can
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handle indels and SNPs (e.g., dDocent, ipyrad), while
others disregard indels to speed computation (e.g., Stacks,
GibPSs). Following mapping or clustering, variable sites are
identified and genotypes are called or assigned likelihoods.
Information on variant positions is commonly stored in
Variant Call Format (VCF), which can be further filtered using
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packages such as veftools (Danecek etal. 2011). Stacks
can additionally produce population genetic summary statis-
tics and locus-specific statistical tests (Catchen et al. 2013),
further contributing to its popularity. Other software common-
ly used in population genetic analyses can also be used for
flexible assembly (e.g., bwa; Li and Durbin 2009) and variant
calling (samtools, Li et al. 2009; GATK, McKenna et al.
2010). Although the above pipelines typically have easy to
follow tutorials, investigators should have the bioinformatic
expertise to thoroughly explore all aspects of data quality and
to perform careful filtering of variants. It is worth noting that
most of these methods require users to set coverage thresholds
for calling genotypes, treat individual genotypes failing to
meet such thresholds as missing data, and do not incorporate
information on uncertainty (further discussed below).

Sources of genotyping error

PCR duplicates, when one allele is randomly over amplified
with respect to another, artificially increase homozygosity
(Davey et al. 2011; Puritz et al. 2014b) and can occur in any
sequencing by synthesis approach that utilizes PCR for library
preparation. The original RADseq allows the detection of
PCR duplicates with paired-end sequencing because random
shearing ensures reads from the fragmented ends will start and
stop at different positions (Hohenlohe et al. 2013). Although
other methods cannot directly detect PCR duplicates, labora-
tory modification can reduce PCR artefacts (Puritz et al.
2014b), and replicate libraries can be used to evaluate error
introduced during laboratory preparation (e.g., Mastretta-
Yanes et al. 2015). PCR duplicates, however, should not sys-
tematically affect allele frequency estimates, as they are not
related to allelic variation. The mis-assembly of reads from
paralogous or repetitive regions can also cause error by falsely
identifying heterozygous genotypes, and this could be exacer-
bated in tree genomes with many instances of gene duplica-
tion and large repetitive fractions, especially those of conifers
(Nystedt et al. 2013; Wegrzyn et al. 2014). This problem can
be ameliorated with reference genome use, but bioinformatic
methods also exist for filtering of loci with exceptionally high
coverage, unbalanced read counts in heterozygotes, or abnor-
mally high polymorphism (Table 3; Gayral et al. 2013; Hapke
and Thiele 2016; Verdu et al. 2016).

Because RADseq samples genomes are based on restric-
tion cut sites, the data are subject to complications arising
from segregating mutations within cut sites. Allelic dropout
(ADO) occurs when such mutation causes an allele to not be
sequenced, leading to patterns of missing data which can bias
allele frequency estimates and cause heterozygous genotypes
to be erroneously identified as homozygous. ADO can bias
estimates of genetic diversity downward, increase Fgry esti-
mates, and lead to false positives in Fgp genome scans
(Amold et al. 2013; Gautier et al. 2013; Cariou et al. 2016).

Investigators should be cautious about this source of bias for
locus-specific parameter estimates for inferring selection and
aware that RADseq is not ideal for comparing genetic diver-
sity estimates across systems. As ADO is driven by polymor-
phism itself (groups with higher polymorphism are more like-
ly to harbor restriction site mutations), taxa and genomic re-
gions with higher polymorphism are more prone to the bias
caused by ADO (Cariou et al. 2016; Cooke et al. 2016).
Cariou et al. (2016) used simulations to illustrate that the bias
has limited effect on diversity estimates for taxa with poly-
morphism rates below 2%, although with higher levels of
polymorphism, ADO could substantially bias estimates of ge-
netic diversity. ADO can affect some types of analyses more
than others, but its influence can be minimized by removing
loci for which reads do not occur in all (or most) samples
(Davey et al. 2013; Puritz et al. 2014b). GBStools (Cooke
et al. 2016) is capable of detecting and correcting for allelic
dropout (based on differences in coverage among loci), al-
though it relies on relatively high coverage depth. As some
forest tree populations harbor high levels of genetic diversity,
investigators working with such systems should be particular-
ly aware of the influence ADO could have on parameter esti-
mates, and make attempts to evaluate and minimize this influ-
ence. Additional discussion of ADO and other sources of
RADseq genotyping bias can be found in Davey et al.
(2013), Puritz et al. (2014b), Mastretta-Yanes et al. (2015),
Fountain et al. (2016), and Andrews et al. (2016).

As with any high-throughput sequencing approach, bioin-
formatic processing of RADseq data can substantially influ-
ence the characteristics of retained loci and downstream anal-
yses (Mastretta-Yanes et al. 2015; Rodriguez-Ezpeleta et al.
2016; Shafer et al. 2017). Careful filtering is essential for
minimizing the influence of sequencing, alignment, and
genotyping error, and may involve consideration of coverage
depth, mapping and genotype quality, departures from HWE,
counts of reads in heterozygotes, and other parameters. Loci
with low minor allele frequencies (e.g., MAF < 0.03) are often
filtered to guard against calling variants introduced from se-
quencing error. However, low-frequency variants can illus-
trate unique aspects of population history (e.g., Gompert
et al. 2014), and their removal can adversely influence some
population genetic analyses (Linck and Battey 2017), partic-
ularly those based on the site frequency spectrum (SFS).
Shafer et al. (2017) compared parameter estimates generated
from the same data using > 300 different combinations of
genotyping pipelines and filtering parameters. They reported
substantial variation in resulting summary statistics (e.g., 7,
Het,ps, Fis), and especially inferred demographic parameters,
highlighting the potential effect of assembly, variant calling,
and filtering methods and parameters used with RADseq data.
Yet, aside from the unique consequences of ADO, most of the
challenges associated with variant calling from high-
throughput sequencing approaches are not unique to
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RADseq. As for any high-throughput sequencing data, the
characteristics of raw data and the range of parameter values
used for bioinformatic analyses should be carefully consid-
ered (Catchen et al. 2013; Mastretta-Yanes et al. 2015).
Bioinformatic approaches and parameter choices should be
carefully reported, as well as metrics associated with coverage
depth and accepted levels of missing data in variants retained
for analyses. Mastretta-Yanes et al. (2015) demonstrate the
ability to detect genotyping errors and optimize Stacks
using sequencing replicates, and Paris et al. (2017) illustrate
a method using Stacks that does not require additional se-
quencing. Researchers should also consider approaches that
incorporate statistical uncertainty into genotype inference and
downstream analyses.

Incorporating genotype uncertainty

High-throughput sequencing data can be used to infer geno-
types probabilistically based on read quality and coverage
depth, with explicit statistical models (in contrast to previous
genotyping methods for which implicit models and methods
might have masked genotype uncertainty). As with any high-
throughput sequencing method, RADseq data are character-
ized by stochastic variation in sequence coverage depth across
individuals and loci. Statistical uncertainty in genotypes arises
from sequencing and alignment errors, variation in coverage
depth, and finite sampling of alleles from individuals. For
many of the software pipelines in Table 3, genotypes are cat-
egorically called at loci with user-specified coverage thresh-
olds. This fails to propagate information on genotype uncer-
tainty, and results in large amounts of data being discarded (or
treated as missing) that do not meet coverage thresholds but
that could improve estimation of population-level parameters.
Consequently, many authors have argued that genotype uncer-
tainty should be modeled probabilistically and incorporated in
statistical genetic methods, particularly for the analysis of low
to medium coverage data (Nielsen et al. 2011; Buerkle and
Gompert 2013; Fumagalli et al. 2013). Sequencing quality,
alignment quality, and coverage depth can be incorporated
into genotype likelihoods that include information on uncer-
tainty, can be associated with multi-sample information, and
can lead to more accurate genotype calls (Nielsen et al. 2011).
Genotype likelihoods can be calculated for RADseq data with
several commonly used programs (e.g., samtools, Li et al.
2009; GATK, McKenna et al. 2010; ANGSD, Korneliussen
et al. 2014), and analyses conducted directly on the likeli-
hoods can allow the downstream incorporation of uncertainty
(e.g., Skotte et al. 2013; Vieira et al. 2013). ANGSD contains a
suite of programs for estimating genotype likelihoods and
conducting population genetic analyses with them.

Bayesian models have also been developed that account for
coverage depth and quality during the estimation of genotype
probabilities, and that improve parameter estimation for low-
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coverage sequencing data (e.g., Gompert et al. 2012, 2014,
Nielsen et al. 2012; Fumagalli et al. 2013). These approaches
are appealing because they can incorporate population-level
priors (e.g., allele frequencies) into posterior estimates of ge-
notype probabilities. Bayesian genotype probabilities can be
used to call genotypes based on probability thresholds or can
be directly used in downstream analyses, thereby incorporat-
ing genotype uncertainty. Recent studies have described and
used such models to estimate allele frequencies and genotype
probabilities (Gompert et al. 2012; Nielsen et al. 2012), to
quantify population structure (Fumagalli et al. 2013), and to
estimate admixture coefficients (Skotte et al. 2013; Gompert
et al. 2014; Lindtke et al. 2014). These approaches allow in-
vestigators to avoid discarding large amounts of data that do
not pass coverage depth thresholds set by many genotype
calling approaches, and can result in a lower frequency of
genotypes being treated as missing data.

Given a fixed budget, researchers face a trade-off among
coverage depth, the number of individuals, and the number of
sampled genomic regions. Although higher genotype certain-
ty may be preferred for inferences relying on specific individ-
ual genotypes, sequencing larger numbers of individuals at
lower depth can improve the estimation of population-level
parameters. This is because all individuals contain informa-
tion about a population, and allele frequencies, not genotypes
per se, are used for many analyses. Similarly, because all loci
contribute information about an individual, larger numbers of
loci will improve the estimation of parameters for individuals
(e.g., admixture coefficients, Skotte et al. 2013; Gompert et al.
2014; Lindtke et al. 2014). Indeed, studies using such models
to investigate the trade-off between coverage depth and sam-
ple size have found that, for a fixed amount of sequencing,
estimates of population and individual-level parameters have
less bias and more precision with larger numbers of individ-
uals and relatively low sequencing coverage (1-2X; Buerkle
and Gompert 2013; Fumagalli et al. 2013). In practice, the
optimal investment of sequencing among the number of indi-
viduals, the number of loci, and coverage depth will depend
on the purpose of the work and the analytical methods to be
employed. As research in tree genetics often benefits from
sampling large numbers of individuals, low to medium cover-
age projects could often be preferable and would be best lev-
eraged by the use of methods incorporating uncertainty.

Applications of RADseq to forest tree genetics

RADseq data have been generated for research on diverse tree
species and for a variety of applied and basic objectives
(Table 1). The number of publications using RADseq in tree
genetics has increased sharply after early examples, with the
majority occurring over the last 2 years (Table 1). This trend
suggests that the use of RADseq will continue to increase, and
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that it will be among the most common approaches for gener-
ating SNP data for tree genetics for the near future. Below we
highlight several research areas where RADseq data are con-
tributing to genetic analyses of trees and other non-model
organisms.

Linkage mapping

Genetic linkage maps have long been used to describe the
genomes of trees and to detect quantitative trait loci (QTL)
associated with economically or ecologically important phe-
notypes (reviewed by Ritland et al. 2011). Conifers in partic-
ular are highly amenable to linkage mapping due to the avail-
ability of breeding populations, and because the haploid
megagametophyte tissue of seeds directly captures the prod-
ucts of maternal meioses (Cairney and Pullman 2007). The
increased number of loci that can be readily generated by
RADseq is enabling the construction of denser linkage maps
than previous approaches allowed, improving genomic re-
sources that remain useful for many analyses in tree genetics.
Linkage mapping with RADseq can be a useful alternative for
characterizing genomes of species where whole genome se-
quencing is still cost prohibitive and challenging. Linkage
maps can also improve genome assemblies, because they
can be used for ordering of scaffolds assembled through de
novo sequencing and assembly (Bartholomé et al. 2015; Fierst
2015). Higher density maps could be especially useful for
improving assemblies for the ongoing conifer genome pro-
jects, which, due to massive genome sizes and high repeat
content, are currently producing assemblies containing enor-
mous numbers of unordered scaffolds (Nystedt et al. 2013;
Neale et al. 2014; Stevens et al. 2016).

Linkage mapping has been the most common application
of RADseq in trees to date (Table 1) and has resulted in sub-
stantially higher mapping densities than previous most marker
systems allowed (e.g., Friedline et al. 2015; Mousavi et al.
2016; Fuentes-Utrilla et al. 2017). For example, Friedline
et al. (2015) used RADseq data generated from megagameto-
phytes of four maternal trees to map 20,655 contigs to unique
positions along the 12 linkage groups of Pinus balfouriana,
creating one of the densest genetic maps published for any tree
species to date. Linkage maps generated with RADseq data
have also been used to map QTL segregating with economi-
cally or ecologically important phenotypes in forest and fruit
tree species (Bielenberg et al. 2015; Pootakham et al. 2015b;
Fuentes-Utrilla et al. 2017). Higher density linkage maps
should also be useful for characterizing genome-wide patterns
of diversity, divergence, and LD in natural populations. For
example, linkage maps with binned markers (e.g., Friedline
et al. 2015) could be used to study patterns of LD within and
among populations and to associate these patterns with other
population genetic summaries (e.g., heterozygosity, SFS).
This could improve analyses for a variety of questions

outlined below and also provide resources to assess the effi-
cacy of RADseq to cover and describe genomic variation.

Population genetic structure and history

The evolutionary histories of recently diverged populations
and species are often hard to disentangle due to recent diver-
gence, periods of ongoing gene flow, and the variable effect of
evolutionary processes across genomes. Higher density SNP
data generated with modern genotyping platforms have sub-
stantially improved resolution for understanding genetic dif-
ferentiation across the landscape and across species bound-
aries. For non-model organisms and limited research budgets,
RADseq data have proven useful for documenting fine-scale
or cryptic patterns of population genetic structure that were
undetectable with fewer loci (e.g., Larson et al. 2014;
Benestan et al. 2015; Alter et al. 2017). Such data can also
produce more precise estimates of ancestry, which can im-
prove our understanding of how hybridization and introgres-
sion vary across genomes and populations (e.g., Caseys et al.
2012; Mandeville et al. 2015).

Features of tree biology such as high rates of outcrossing
and long-distance pollen and seed dispersal often limit popu-
lation genetic differentiation, and forest tree populations are
often thought to be large and unstructured (Petit and Hampe
2006). More thorough resolution offered by higher density
genotypic data may challenge this view (e.g., Slavov et al.
2012) and should increase our understanding of the extent to
which historical, geographical, and environmental variation
shape population structure. To date, surprisingly few studies
have utilized RADseq to investigate landscape genetic
structure in trees. Sun et al. (2016) were able to delineate
populations of two varieties of Castanopsis carlesii
(Fagaceae) in southeastern China, finding support for climat-
ically driven divergence in the face of recurrent gene flow.
Johnson et al. (2017a) employed ddRADseq to recover the
postglacial colonization history of mountain hemlock (75uga
mertensiana) on Alaska’s Kenai Peninsula, finding support
for subtle population structure in spite of high connectivity
and long-distance dispersal. Their results suggest that moun-
tain hemlock could respond to climate change via dispersal
across elevation and latitude, highlighting how such per-
spective could inform conservation and/or management
strategies.

Increased precision in ancestry estimates has also been
demonstrated in studies applying RADseq to analyze
admixture and reproductive isolation in hybrid zones.
Zohren et al. (2016) documented unidirectional introgression
from two diploid birch species into a third tetraploid species
using RADseq, with improved resolution compared to past
analyses of microsatellites. Additionally, a pair of studies es-
timated intra- and interspecific ancestry for hundreds of indi-
viduals across replicate Populus hybrid zones in Europe,
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finding evidence that strong postzygotic selection against cer-
tain hybrid classes maintains reproductive isolation (Lindtke
et al. 2014; Christe et al. 2016). In contrast, Menon et al.
(2018) documented a history of divergence with gene flow
and an abundance of advanced generation hybrids between
Pinus strobiformis and P. flexilis, with admixture coefficients
correlated with environmental variables. These patterns are
consistent with a lack of strong isolating barriers and highlight
the important role of extrinsic factors for evolutionary patterns
within hybrid zones. Given the improved resolution RADseq
data can have for describing genetic structure and admixture,
such analyses of forest trees are likely to increase, especially
since an understanding of population structure and admixture
is often important for other analyses (e.g., GWAS, local
adaptation).

In addition to characterizing patterns of contemporary pop-
ulation structure, RADseq datasets are facilitating analyses of
historical demographic processes (e.g., Nice et al. 2013;
O’Loughlin et al. 2014). Compared to traditional molecular
marker systems, the greatly increased number of markers ac-
cessible with RADseq can allow more accurate evaluation of
alternative demographic scenarios and facilitate parameter es-
timation (e.g., population expansion, migration, time;
Robinson et al. 2014; Jeffries et al. 2016). RADseq data have
been used with approaches that compare the observed SFS to
alternatives generated with coalescent simulations (e.g.,
fastsimcoal?2; Excoffier et al. 2013) or diffusion approx-
imations (5adi; Gutenkunst et al. 2009). Approximate
Bayesian computation (ABC; Shafer et al. 2015; Elleouet
and Aitken 2018) has also been used to analyze more complex
models. Recent studies have used such approaches to evaluate
models of demographic history in tree species (Eaton et al.
2015; Izuno et al. 2017; Menon et al. 2018), and such analyses
could contribute perspective on historical processes underly-
ing divergence and speciation as RADseq datasets accumu-
late. However, the estimation of such demographic parameters
could in some cases be sensitive to individual sampling effort
and bioinformatic approaches used for RADseq analyses (e.g.,
Elleouet and Aitken 2018), probably due to the difficulty of
accurately quantifying the distribution of low-frequency vari-
ants in the SFS (Shafer et al. 2017). Although RADseq holds
promise for demographic reconstruction, investigators should
carefully consider a variety of genotyping and filtering ap-
proaches to assess robustness of results.

Molecular quantitative genetics

Research in forest genetics often benefits from quantitative
genetic parameter estimates to understand geographic varia-
tion in local adaptation, to predict the phenotypic response to
natural or artificial selection, and to understand how popula-
tions might respond to environmental change (Cornelius
1994; Savolainen et al. 2007; Lind et al. 2018).
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Traditionally, approaches for estimating quantitative genetic
parameters, including heritability, have relied on controlled
crosses, progeny designs within common gardens, or related-
ness estimates from pedigrees in select natural populations
(Falconer and Mackay 1996; Hill 2010). Common garden
approaches for estimating quantitative genetic parameters
have a long history in forest trees (reviewed in Morgenstern
1996; Lind et al. 2018), but require substantial time invest-
ment, and are often limited to phenotypes in the seedling
phase. Moreover, as common gardens can have less environ-
mental and more additive genetic variance, heritabilities esti-
mated using progeny arrays can be elevated relative to natural
populations (Conner et al. 2003; Castellanos et al. 2015). Such
estimates can also be affected because the assumption that
offspring are half-sibs can be violated in open pollination de-
signs, and also do not account for variance in realized related-
ness caused by segregation and recombination (Hill and Weir
2011). Alternatively, relatedness estimates from genetic
markers can be used with phenotypic measurements to quan-
tify heritability in natural populations (Andrew et al. 2005;
Visscher et al. 2008; Gienapp et al. 2017).

Marker-based approaches for estimating relatedness in nat-
ural populations were suggested some time ago (Ritland 1996;
Ritland 2000), but early applications suffered from low preci-
sion due to small marker numbers (Thomas et al. 2002;
Coltman 2005; Csilléry et al. 2006). With higher density data,
such as that generated with RADseq, realized genomic relat-
edness matrices can provide precise estimates of relatedness
without the need for pedigree information. Heritability esti-
mates from genomic data often agree with (Robinson et al.
2013; Bérénos et al. 2014; Gienapp et al. 2017), or are more
precise than those estimated from pedigrees (El-Dien et al.
2016). For example, relatedness estimates based on 7338
SNPs allowed for separation of additive and non-additive fac-
tors and improved heritability estimates compared to a pedi-
gree model for open-pollinated white spruce families (El-Dien
et al. 2016). The number of loci needed for precise estimation
of relatedness will vary by species, with larger numbers of loci
needed for taxa with low LD and larger genomes (Wang
2016). Given sufficient genomic sampling, the ability to esti-
mate the realized genomic relationship matrix directly means
that quantitative genetic approaches can be applied in natural
populations of trees, assuming phenotyping can also be effec-
tively accomplished in populations under study. RADseq of-
fers a cost-effective approach for supporting field-based esti-
mation of quantitative genetic parameters in mature popula-
tions of forest trees, where estimates could be obtained for
adult phenotypes in the natural populations in which they
evolve. This could improve understanding of the evolutionary
potential of populations and eventually even inform assisted
migration (e.g., Aitken and Whitlock 2013).

Phenotypic selection has long been used in tree breeding
programs, but has been difficult and expensive as a result of
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long-life spans and late age at maturity. Thus, foresters have
been greatly interested in the possible use of genotypic infor-
mation to improve tree breeding. Although genome-wide as-
sociation analyses have detected variants explaining variation
in key phenotypes, markers have typically explained very
small proportions of phenotypic variation (e.g., Eckert et al.
2009; Quesada et al. 2010), limiting their ability to guide tree
breeding. In contrast to genome-wide association approaches,
genomic selection simultaneously estimates effects over all
markers to predict phenotype and estimate breeding values
based on genome-wide estimates of relatedness among indi-
viduals (Grattapaglia and Resende 2011; Grattapaglia 2014).
Genomic selection relies on precise and repeatable measures
of phenotype, but further benefits from the highest marker
density possible. Genetic and phenotypic data are analyzed
with mixed models to estimate predictors of breeding value
in a training population, before genotypic data alone are used
with these models to estimate values in the breeding popula-
tion. Many phenotypes of interest to tree breeders can be mea-
sured precisely, and emerging methods for high-throughput
phenotyping could further improve capabilities (Desta and
Ortiz 2014).

Over the last decade, animal breeders have found great
success with the application of genomic selection for breeding
value estimation (Daetwyler et al. 2010; Hayes and Goddard
2010; Meuwissen et al. 2016), and interest has grown in its
application to crop and tree breeding programs (Grattapaglia
and Resende 2011; Grattapaglia 2014). Genomic selection can
be employed in any population for which precise and repro-
ducible phenotypic measures and high-density markers can be
obtained. It has been applied in a number of forest and fruit
tree species where SNP chip data are available, and resulted in
relatively high phenotypic prediction accuracies (Kumar et al.
2012; Resende et al. 2012a, 2012b, 2012c; Zapata-Valenzuela
et al. 2012). More recently, RADseq approaches have been
employed for genomic selection in trees, with promising re-
sults (El-Dien et al. 2015; Ratcliffe et al. 2015; Fuentes-Utrilla
et al. 2017). Because RADseq data can be inexpensively and
rapidly obtained for large numbers of trees, it could be valu-
able for genomic selection in non-model trees for which other
genomic resources, such as high-density SNP chips, are not
available or not cost-effective.

Phylogenetic inference

RADseq has been increasingly used for phylogenetic infer-
ence in groups where traditional sequencing approaches failed
to resolve relationships (Cruaud et al. 2014; Darwell et al.
2016; Massatti et al. 2016). RADseq data are well suited for
phylogenetic inference because it samples SNPs with a
genome-wide distribution, often recovers extraordinarily large
numbers of phylogenetically informative markers, and does
not require prior genomic information on the species under

study (Ree and Hipp 2015; Leaché and Oaks 2017).
RADseq has excelled in producing well-resolved and highly
supported phylogenies for young clades and adaptive radia-
tions characterized by recent divergence (Wagner et al. 2013;
Cruaud et al. 2014; Ebel et al. 2015; Darwell et al. 2016). In
addition, analyses of both empirical and simulated data have
illustrated that RADseq can be useful for deeper divergence
(e.g., up to 60 Ma, Rubin et al. 2012; Cariou et al. 2013; Eaton
et al. 2017). Although the retention of orthologous restriction
sites across sampled groups will depend on divergence time,
effective population size, and other factors, RADseq could be
a powerful approach for phylogenetic analyses of tree species
from many groups.

Despite this promise, there are aspects of RADseq data that
cause issues for phylogenetic inference, including ADO and
the recognition of paralogous loci. ADO will cause the sys-
tematic loss of shared loci between clades and will result in
larger amounts of missing data for RADseq studies sampling
more strongly divergent lineages, although these patterns of
missing data can themselves be phylogenetically informative.
While RADseq is typically viewed as more appropriate for
younger groups that share orthologous restriction sites at suf-
ficient rates (Rubin et al. 2012; Cariou et al. 2013), it has also
been successful at resolving deeper relationships despite larg-
er amounts of missing data arising from ADO (e.g., Eaton
et al. 2017). The extent of information loss is affected by tree
shape and taxonomic sampling breadth, both of which can be
optimized with a well-designed sampling scheme (Eaton et al.
2017). Due to the form of the data, most studies concatenate
RADseq loci rather than use multilocus methods to analyze
them independently (Ree and Hipp 2015). As this ignores
among locus variation in genealogy, evolutionary rate, and
substitution patterns, problems with inference could arise
from concatenation (Liu et al. 2015b). Alternatively,
coalescent-based methods account for unique evolutionary
history across loci but must rely on other simplifying assump-
tions in the process (Leaché and Oaks 2017). While future
development of analytical approaches should improve under-
standing of best practices for utilizing RADseq data for phy-
logenetic inference, the positives of the approach are leading
to arapid increase in its use. Stacks and ipyrad have been
most commonly used to process RADseq data for phyloge-
netic inference, and the latter was developed specifically for
this purpose. RADIS (Cruaud et al. 2016) allows for efficient
exploration of how assembly and variant calling parameters in
Stacks affect tree topology. For detailed reviews on the
analytical aspects of applying of RADseq data to
phylogenetic inference see Ree and Hipp (2015) and Leaché
and Oaks (2017).

RADseq data have increased phylogenetic resolution and
resolved patterns of diversification in a wide variety of plant
groups exhibiting recent divergence (Hou et al. 2015; Mort
et al. 2015; Massatti et al. 2016), including trees (Liu et al.
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2015a; Paun et al. 2016; Hamon et al. 2017). For example,
RADseq data strongly resolved relationships of subgroups
and species pairs in Coffea, a young genus that had been
challenging due to shallow sequence divergence (Hamon
et al. 2017). RADseq data has also improved the ability to
resolve complicated phylogenetic histories within and among
sections of oaks (Quercus), a group known for extensive hy-
bridization (Grant 1981). For example, Hipp et al. (2014) re-
solved phylogenetic relationships within and among the
white, red, and golden oaks (sections Quercus, Lobatae, and
Protobalanus), producing a more highly resolved topology
than past analyses. Such studies demonstrate that RADseq
has potential to refine our understanding of the evolutionary
histories of tree lineages, especially for young groups in which
phylogenetic resolution has been elusive.

Genetic basis of phenotype and adaptation

Genome-wide data are needed for the discovery and charac-
terization of adaptive genetic diversity within a forward
genetics-based framework. This is because it is impossible
to fully describe the genetic architecture of phenotype based
on patterns of trait variation in controlled settings (e.g., a com-
mon garden). For example, heritability estimates do not quan-
tify the number of loci underlying trait variation (Visscher
et al. 2008), and studies linking genotypic to phenotypic var-
iation or trying to establish the genetic architecture of adapta-
tion do not have precise a priori expectations, even in well-
studied systems, for the number of loci involved. Additionally,
even if an a priori number of true positives could be estimated,
there remains the issue of detectability, which is linked to the
unknown values for the frequencies of causative alleles within
natural populations (e.g., rare alleles with consequential ef-
fects are difficult to detect in realistic sample sizes). Thus,
empirical genome-wide scans aimed at characterizing adap-
tive genetic diversity are optimized as interrogation of stand-
ing levels of genomic variation increases.

Genome scans for population differentiation outliers, as
well as gene-environment associations, have been successful-
ly utilized with RADseq data for multiple species. Inferences
have ranged from the detection of genomic regions potentially
involved in adaptation (e.g., Hohenlohe et al. 2010; Guo et al.
2016; Laporte et al. 2016) to association analyses linking phe-
notypic and genotypic variation (e.g., Comeault et al. 2014;
Slavov et al. 2014; Brelsford et al. 2017). Despite the popu-
larity of RADseq for such approaches, recent debate has iden-
tified concerns with naive applications of the data to identify
genetic architectures underlying fitness-related variation
(Catchen et al. 2017; Lowry et al. 2017a, 2017b; McKinney
et al. 2017). Much of this debate centers upon the fact that
reduced representation approaches, such as RADseq, by def-
inition sample limited fractions of genomes and are under-
powered for detecting genetic regions involved in adaptation
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(Tiffin and Ross-Ibarra 2014; Hoban et al. 2016). The take
home from this debate is that the ability of RADseq data to
detect genetic architectures of adaptation depends upon a set
of nuanced issues related to achievable marker density, un-
known patterns of LD, and the true genetic architecture of
adaptation.

As highlighted by Lowry et al. (2017a, 2017b), thorough
characterization of the genetic architecture of adaptation will
rarely be achievable with RADseq, as markers are often sep-
arated by physical distances that far exceed the average extent
of LD. In addition, if it is unlikely to identify many adaptive
variants a priori yet a large number are discovered, one poten-
tial explanation is that an unrecognized number of false pos-
itives are involved. Nonetheless, Catchen et al. (2017) and
McKinney et al. (2017) highlight numerous cases where
RADseq data were useful inputs for the detection of adaptive
genetic variation. This includes examples where RADseq loci
were implicated in replicate cases of parallel evolution (e.g.,
Hohenlohe et al. 2010; Gagnaire et al. 2013; McGee et al.
2016), tagged genomic regions containing genes previously
implicated in adaptation (Hohenlohe et al. 2010; Nadeau et al.
2014), or identified loci explaining substantial percentages of
phenotypic variation (Comeault et al. 2014; Brelsford et al.
2017). Thus, when RADseq can generate marker densities that
effectively span the extent of LD, it could be quite useful for
the initial detection of potentially adaptive variation. Also em-
bedded within this debate are issues related to the unknown
genetic architecture of adaptation relative to the size and com-
plexity of genomes (reviewed by Lind et al. 2018 for trees),
the evolutionary processes affecting genetic architectures
(e.g., hard versus soft sweeps; Pritchard et al. 2010), and re-
search goals (e.g., partial discovery versus complete descrip-
tion). The entanglement of unknown biological patterns with
theoretical expectations that can only be tested with genome-
wide data, of which RADseq is one cost-effective source, has
thus created a research environment where investigators must
carefully consider trade-offs and interactions among study de-
sign, interpretation of empirical results, biology of the system,
and expectations from theory.

For forest trees, a long history of common garden and re-
ciprocal transplant studies has demonstrated adaptation to lo-
cal environments (reviewed by Savolainen et al. 2007, 2013;
Lind et al. 2018). Before the advent of high-throughput se-
quencing, attempts to quantify the molecular genetic basis of
adaptation often employed candidate gene approaches, where
modest numbers of genes of known or hypothesized function
were analyzed for association with phenotype or environment
(e.g., Eckert et al. 2009, 2010; Quesada et al. 2010; Holliday
et al. 2010). Given that the genetic architecture of adaptation
in trees is often expected to be polygenic, RADseq offers a
cost-effective avenue to generate genome-wide data for large
numbers of samples without a priori declarations about the
numbers and types of genetic regions underlying adaptive
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variation. As detailed above, the success of scans based on
these data depends on a number of nuanced quantities and
considerations. LD has often been reported as very low in
trees (e.g., Neale and Ingvarsson 2008; Sork et al. 2016),
although recent resequencing work illustrates that LD may
be higher than previously assumed and can vary substantially
across tree genomes (e.g., Pyhéjérvi et al. 2011; Slavov et al.
2012; Silva-Junior and Grattapaglia 2015). RADseq methods
with minimal complexity reduction can generate marker den-
sities that span the extent of LD across small to moderately
sized angiosperm genomes (Table 2), and have been able to
detect genetic regions potentially involved in adaptation. For
example, Stolting et al. (2013) applied ~ 38,000 SNPs (1 SNP
per ~ 13 kb) to characterize introgression across hybridizing
Populus alba and P. tremula populations and quantified het-
erogeneous divergence consistent with differential introgres-
sion of genomic regions involved in isolation or adaptive di-
vergence. Pais et al. (2017), moreover, reported evidence for
environmentally driven divergence at loci potentially involved
in adaptation to abiotically divergent conditions in Cornus
florida populations.

In contrast, genome scans using RADseq data have less
often been applied to conifers, perhaps due to concerns that
marker density and rapidly decaying LD (Pyhijarvi et al.
2007; Neale and Ingvarsson 2008) could prevent identifica-
tion of genetic architectures within their enormous and
complex genomes. Maybe surprisingly so, RADseq data
used for such analyses in multiple conifer species have
yielded positive results consistent with identification of
some portion of the genetic architecture underlying trait
variation and adaptation. For example, Parchman et al.
(2012) detected 11 SNPs that explained more than 50% of
the phenotypic variation in serotiny across populations of
Pinus contorta. Similarly, Lind et al. (2017) detected loci in
P. albicaulis associated with a water availability gradient
across the Lake Tahoe Basin and characterized signals of se-
lection for these loci as being subtle and coordinated allele
frequency shifts across populations.

For many non-model tree species, RADseq remains an
economical and powerful avenue for producing high-density
SNP data and will likely continue to be utilized for initial
attempts at detecting genomic regions involved in adaptation.
This is because whole genome resequencing for large num-
bers of samples has yet to become cost-effective for most tree
species, and other reduced representation methods also have
limitations and biases (Catchen et al. 2017; McKinney et al.
2017; discussed further below). Ultimately, as we gain a better
understanding of LD in populations of forest trees (cf.
Pyhégjarvi et al. 2011; Slavov et al. 2012; Silva-Junior and
Grattapaglia 2015), our understanding for the utility of
RADseq derived data for querying patterns of adaptation
should increase. In the meantime, forest geneticists need to
understand the limits of RADseq, carefully match expected

patterns in RADseq data with expectations from theory, strive
to provide estimates of LD when possible, and integrate across
multiple lines of evidence (i.e., outliers from genome scans
alone are limited evidence regardless of how markers were
generated) when making inferences about adaptation (see
Lowry et al. 2017b for useful guidelines for applying
RADseq to analyze the genetic basis of adaptation).

Prospectus and conclusions

RADseq has rapidly facilitated the generation of high-density
population genomic data for inference in many research areas
of tree genetics. Nonetheless, choosing among alternative
high-throughput methods requires consideration of research
objectives, genomic resource availability, genome character-
istics, and the number of samples to be analyzed. SNP
genotyping arrays developed for trees with ample genomic
resources will continue to be valuable because they produce
clean and reproducible data, often in annotated coding re-
gions, across populations and studies (e.g., Geraldes et al.
2013; Porth et al. 2013; McKown et al. 2014; Plomion et al.
2016). Although they do not maximize marker density, SNP
arrays have been usefully applied for genome-wide associa-
tion (e.g., Porth et al. 2013) and genomic selection (e.g.,
Kumar etal. 2012; El-Dien et al. 2016). Genome resequencing
could provide ideal data for population genomics and is prom-
ising for analyses of adaptation in angiosperms with ample
genomic resources. Resequencing studies in such trees have
shed light on population genetic structure (e.g., Slavov et al.
2012), the genetic basis of adaptation (e.g., Evans et al. 2014),
and genome-wide variation in LD (e.g., Wang et al. 2016).
However, genome resequencing is currently out of reach for
tree species with larger genomes and for research requiring
large numbers of individuals. Targeted sequence capture is
less limited by genome size, and targeted exon sequencing
has been successfully applied for analyses of adaption in an-
giosperms and conifers (Holliday et al. 2016; Yeaman et al.
2016). However, targeted capture approaches, whether
they focus on exons or genome variation more broadly,
often require genomic resources and investment for de-
signing capture probes that is not trivial (Jones and
Good 2016). Both targeted exon capture and RNA se-
quencing can provide dense genotypic data in coding
regions but are not ideally suited to characterizing
genome-wide patterns of variation important to many
population genetic inferences. In addition, investigations
of genetic architecture of adaptation with such data of-
ten make the explicit assumption that causal variation
resides largely within coding regions (Stern and
Orgogozo 2008). This may not be true for species with
large and complex genomes (Mei et al. 2018) and could
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lead to biased representations of effect size distributions
even when causal variation is partly genic.

RADseq is best distinguished from the above alternatives
by its low cost, laboratory flexibility and simplicity, represen-
tative sampling of coding and non-coding variation, and ap-
plicability to any tree species. For non-model trees, the leap
from traditional molecular marker systems to high-density
RADseq data has allowed genome-wide perspectives that
were far out of reach prior to its emergence. The diversity
and flexibility of laboratory methods allow datasets to span a
continuum of marker densities and sampling effort, ensuring
that RADseq can be applied to a wide range of ecological,
evolutionary, and applied issues. For some trees, RADseq
studies may be designed to effectively cover the range of LD
for analyses aimed at detecting selection, although limited
marker densities will compromise its utility for such applica-
tions. Regardless, many research goals in tree genetics are less
limited by incomplete genomic sampling. RADseq is well
suited for phylogenetic inference and range-wide analyses of
population genetic variation that can improve our understand-
ing evolutionary history, guide conservation and management,
and even inform analyses of the genetic basis of adaptation. It
could also enable quantitative genetic approaches in natural
populations and contribute to linkage mapping to enhance
genomic resource development and the characterization of
LD in non-model trees.

Investigators should understand the limits of RADseq
and carefully weigh the costs and benefits of alternative
approaches when matching genotyping methods with re-
search goals and budgets. The increasing availability of
reference genomes will enable alternative methods, but
will also improve the design of RADseq studies, as well
as bioinformatic processing and interpretation of analyses.
Groups applying RADseq and other high-throughput ap-
proaches should strive to build necessary expertise for the
responsible analysis of such data. When possible, investi-
gators should explore in silico patterns prior to empirical
assessment of populations, choose methods carefully to
suit research objectives, report and summarize patterns
of LD, and attempt to assess and report homology of
RADseq loci to available genome resources. As few tree
species have substantially developed genomic resources,
and many are characterized by moderate to large genomes
with considerable complexity, RADseq should remain
among the most cost-effective methods for generating
SNP data into the near future.
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